專升本/專轉(zhuǎn)本/專接本
當(dāng)前位置: 易學(xué)仕在線> 考試資訊> 報考> 大綱> 浙江> 2020浙江專升本《高等數(shù)學(xué)》考試大綱

2020浙江專升本《高等數(shù)學(xué)》考試大綱

發(fā)布時間:2020/02/25 16:41:57 來源:易學(xué)仕專升本網(wǎng) 閱讀量:2550

摘要:?浙江省教育考試院已經(jīng)公布了2020浙江專升本《高等數(shù)學(xué)》考試大綱,如果你是2020年打算備考的考生,現(xiàn)階段就可以根據(jù)考試大綱內(nèi)容提前復(fù)習(xí)了。

   浙江省教育考試院已經(jīng)公布了2020浙江專升本《高等數(shù)學(xué)》考試大綱,如果你是2020年打算備考的考生,現(xiàn)階段就可以根據(jù)考試大綱內(nèi)容提前復(fù)習(xí)了。


《高等數(shù)學(xué)》考試大綱


考試要求

    考生應(yīng)按本大綱的要求,掌握高等數(shù)學(xué)函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法。考生應(yīng)注意各部分知識的結(jié)構(gòu)及知識的聯(lián)系;具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力空間想象能力;能運(yùn)用基本概念、基本理論和基本方法進(jìn)行推理、證明和計算;能運(yùn)用所學(xué)知識分析并解決一些簡單的實際問題。

 

考試內(nèi)容

一、函數(shù)、極限和連續(xù)

()函數(shù)

1.理解函數(shù)的概念,會求函數(shù)的定義域、表達(dá)式及函數(shù)值,會作出一些簡單的分段函數(shù)圖像。

2.掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性。

3.理解函數(shù)y =?(x)與其反函數(shù)y =?-1(x)之間的關(guān)系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。

4.掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算; 掌握復(fù)合函數(shù)的復(fù)合過程。

5.掌握基本初等函數(shù)的性質(zhì)及其圖像。

6.理解初等函數(shù)的概念。

7.會建立一些簡單實際問題的函數(shù)關(guān)系式。

()極限

1理解極限的概念(只要求極限的描述性定義),能根據(jù)極限概念描述函數(shù)的變化趨勢。理解函數(shù)在一點處極限存在的充分必要條件,會求函數(shù)在一點處的左極限與右極限。

2理解極限的唯一性、有界性和保號性,掌握極限的四則運(yùn)算法則。

3理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì),無窮小量與無窮大量的關(guān)系。會比較無窮小量的階(高階、低階、同階和等價)。會運(yùn)用等價無窮小量替換求極限。

4理解極限存在的兩個收斂準(zhǔn)則(夾逼準(zhǔn)則與單調(diào)有界準(zhǔn)則),掌握兩個重要極限:,,并能用這兩個重要極限求函數(shù)的極限。

()連續(xù)

1.理解函數(shù)在一點處連續(xù)的概念,函數(shù)在一點處連續(xù)與函數(shù)在該點處極限存在的關(guān)系。會判斷分段函數(shù)在分段點的連續(xù)性。

2.理解函數(shù)在一點處間斷的概念,會求函數(shù)的間斷點,并會判斷間斷點的類型

3理解一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的,并會利用初等函數(shù)的連續(xù)性求函數(shù)的極限。

4掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):最值定理(有界性定理),介值定理(零點存在定理)。會運(yùn)用介值定理推證一些簡單命題。

 

二、一元函數(shù)微分學(xué)

()導(dǎo)數(shù)與微分

1.理解導(dǎo)數(shù)的概念及其幾何意義,了解左導(dǎo)數(shù)與右導(dǎo)數(shù)的定義,理解函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系,會用定義求函數(shù)在一點處的導(dǎo)數(shù)。

2.會求曲線上一點處的切線方程與法線方程。

3.熟記導(dǎo)數(shù)的基本公式,會運(yùn)用函數(shù)的四則運(yùn)算求導(dǎo)法則,復(fù)合函數(shù)求導(dǎo)法則和反函數(shù)求導(dǎo)法則求導(dǎo)數(shù)。會求分段函數(shù)的導(dǎo)數(shù)。

4.會求隱函數(shù)的導(dǎo)數(shù)。掌握對數(shù)求導(dǎo)法與參數(shù)方程求導(dǎo)法。

5.理解高階導(dǎo)數(shù)的概念,會求一些簡單的函數(shù)的n階導(dǎo)數(shù)。

6.理解函數(shù)微分的概念,掌握微分運(yùn)算法則與一階微分形式不變性,理解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。

()中值定理及導(dǎo)數(shù)的應(yīng)用

1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。

2.掌握洛必達(dá)(L’Hospital)法則,會用洛必達(dá)法則求,,,,型未定式的極限。

3會利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,會利用函數(shù)的單調(diào)性證明一些簡單的不等式。

4理解函數(shù)極值的概念,會求函數(shù)的極值和最值,會解決一些簡單的應(yīng)用問題。

5會判定曲線的凹凸性,會求曲線的拐點。

6會求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。

7會描繪一些簡單的函數(shù)的圖形。

 

三、一元函數(shù)積分學(xué)

()不定積分

1理解原函數(shù)與不定積分的概念及其關(guān)系,理解原函數(shù)存在定理,掌握不定積分的性質(zhì)。

2熟記基本不定積分公式。

3掌握不定積分的第一換元法(“微分法),第二換元法(限于三角換元一些簡單的根式換元)。

4掌握不定積分的分部積分法。

5會求一些簡單的有理函數(shù)的不定積分。

()定積分

1理解定積分的概念與幾何意義, 掌握定積分的基本性質(zhì)。

2理解變限積分函數(shù)的概念,掌握變限積分函數(shù)求導(dǎo)的方法。

3.掌握牛頓萊布尼茨(Newton—Leibniz)公式。

4.掌握定積分的換元積分法與分部積分法。

5.理解無窮區(qū)間上有界函數(shù)的廣義積分與有限區(qū)間上無界函數(shù)的瑕積分的概念,掌握其計算方法。

6.會用定積分計算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積。

 

四、無窮級數(shù)

()數(shù)項級數(shù)

1.理解級數(shù)收斂、級數(shù)發(fā)散的概念和級數(shù)的基本性質(zhì),掌握級數(shù)收斂的必要條件。

2.熟記幾何級數(shù)調(diào)和級數(shù)p級數(shù)的斂散性。會用正項級數(shù)的比較審斂法與比值審斂法判別正項級數(shù)的斂散性。

3.理解任意項級數(shù)絕對收斂與條件收斂的概念。會用萊布尼茨(Leibnitz) 判別法判別交錯級數(shù)的斂散性。

()冪級數(shù)

1.理解冪級數(shù)、冪級數(shù)收斂及和函數(shù)的概念。會求冪級數(shù)的收斂半徑與收斂區(qū)間。

2.掌握冪級數(shù)和、差、積的運(yùn)算。

3.掌握冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì):和函數(shù)是連續(xù)的、和函數(shù)可逐項求導(dǎo)及和函數(shù)可逐項積分。

4.熟記ex,sinx,cosx,ln(1+x)的麥克勞林(Maclaurin)級數(shù),會將一些簡單的初等函數(shù)展開為xx0的冪級數(shù)。

 

五、常微分方程

()一階常微分方程

1.理解常微分方程的概念,理解常微分方程的階、解、通解、初始條件和特解的概念。

2.掌握可分離變量微分方程與齊次方程的解法。

3.會求解一階線性微分方程。

()二階常系數(shù)線性微分方程

1.理解二階常系數(shù)線性微分方程解的結(jié)構(gòu)。

2.會求二階常系數(shù)齊次線性微分方程。

3.會求二階常系數(shù)非齊次線性微分方程(非齊次項限定為() f(x),其中xn次多項式,為實常數(shù);(),其中為實常數(shù),,分別為xn次,m次多項式)。

 

六、向量代數(shù)與空間解析幾何

()向量代數(shù)

1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。

2.掌握向量的線性運(yùn)算(加法運(yùn)算與數(shù)量乘法運(yùn)算),會求向量的數(shù)量積與向量積。

3會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。

()平面與直線

1.會求平面的點法式方程與一般式方程。會判定兩平面的位置關(guān)系。

2.會求點到平面的距離。

3.會求直線的點向式方程、一般式方程和參數(shù)式方程。會判定兩直線的位置關(guān)系。

4.會求點到直線的距離,兩條異面直線之間的距離

5.會判定直線與平面的位置關(guān)系。

 

試卷結(jié)構(gòu)

試卷總分:150

考試時間:150分鐘

試卷內(nèi)容比例:

函數(shù)、極限和連續(xù)                            20%

一元函數(shù)微分學(xué)                              30%

一元函數(shù)積分學(xué)                              30%

無窮級數(shù)、常微分方程              15%

向量代數(shù)與空間解析幾何             5%

試卷題型分值分布

選擇題共 5題,每小題 4 分,總分20分;

填空題共10題,每小題 4 分,總分40分;                                      

計算題共 8題,       總分60分;                                     

綜合題共 3題,每小題10分,總分30分。             


推薦閱讀:

2020浙江專升本《大學(xué)語文》考試大綱                         

公眾號

抖音

bilibili

微博

聯(lián)系我們

服務(wù)熱線:023-68141520
返回頂部
請選擇培訓(xùn)項目
專升本/專轉(zhuǎn)本/專接本 等級職稱/考研

操作成功

關(guān)閉